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Abstract

Risk-based access control raises some novel prob-
lems that have not yet been investigated. In particular,
the ability to aggregate uncertain risk estimations from
different experts is crucial to the success of risk-based
access control systems. A K-Algebra is proposed in this
paper for this purpose. The algebra is not only able to
support the specification of existing aggregation rules
but also makes it possible to generalize these rules
based on their logical explanations.

1. Introduction

The inflexibility of binary decisions from current
access control systems is inadequate for novel dy-
namic application environments, which is the reason
why risk-based access control has been proposed [1].
Unlike traditional access control systems in which all
risky accesses are prohibited, risk-based access control
systems permit low risky accesses if some mitigating
actions based on their risk estimations, e.g. obligations,
have been, are or will be executed. Therefore, risk-
based access control systems may improve the overall
information flow efficiency and are particularly useful
in emergency or a crisis situations [1]. The recently
proposed Fuzzy Multi-Level Security (Fuzzy MLS)
system [2] is an example of risk-based access control
systems.

In risk-based access control systems, the risk of an
access is evaluated as the possible losses resulting from
the access, e.g. the value of the content, multiplied by
the probability or confidence degree that the subject
may leak the content [2]. Such a risk estimation is
in accordance with standard risk estimation methods
adopted in the engineering field.

However, the distinct properties of access control
systems result in some novel problems in risk estima-
tion. The goal of access control is to prevent possible
losses in the future, which is hard to predict. The
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sensitive nature of access control systems and the in-
volvement of human activities make this situation even
worse. As a result, we lack sufficient information or
knowledge to devise objective equations for computing
the value of the protected data and the probability
that the subject will disclose the data. By objective,
we mean that these equations are built based on well
established theories or sufficient statistical results.

By contrast, we have to rely on subjective equations
devised by human experts to estimate the risk of an
access, including the value of data (loss) and the like-
lihood that the data are disclosed (probability). Such
subjective estimations, unsurprisingly, contain uncer-
tainties or vagueness. More specifically, equations from
different experts may generate different or conflicting
estimations concerning the loss and likelihood. There-
fore, the ability to aggregate uncertain risk estimations
from different sources becomes crucial to the success
of risk-based access control systems, which is the focus
of this paper. To address such issues, in this paper,

o we propose a K-Algebra that focuses on aggre-
gating risk estimations from different sources;

o we suggest criteria for choosing appropriate op-
erations for the aggregation of risk estimations;

« we show that by using the K-Algebra we can
specify existing combination rules for risk estima-
tions and present novel logic-based explanations
for these rules;

« we propose a methodology to generalize existing
combination rules based on the K-Algebra.

The rest of this paper is organized as follows. Sec-
tion 2 introduces some running examples that we will
use to illustrate the discussion. Section 3 formalizes
the problem of estimating risks. Section 4 introduces
the K-Algebra for the aggregation of risk estimations
and discusses in detail its operations. Section 5 shows
that the K-Algebra can be used to specify existing
combination rules. Section 6 presents a method to
generalize existing rules. Section 7 concludes this



paper and suggests a few future research directions.

2. Running Examples

In this section, we present two examples that moti-
vate the operations of the K-Algebra and demonstrate
the aggregation rules. These two examples are based
on some examples from [3]. However, we extend them
to cover more interesting cases. In the rest of the paper,
we use the terms ‘combination rules’ and ‘aggregation
rules’ as synonyms.

In the first example, the possible losses resulting
from an access could be high (H), medium (M), or low
(L). Suppose that we have two experts who estimate
access risks. Given an access, the first expert believes
that the loss is high with confidence degree 0.8 or
medium with confidence degree 0.1. The likelihood
that the expert does not know the exact loss due to in-
sufficient information is very low, say 0.1. By contrast,
the second expert believes that the loss is medium with
confidence degree 0.1 or low with confidence degree
0.7. The likelihood that the second expert does not
know the exact loss is 0.2. The question is “what are
the final risk estimations based on the aggregation of
these two experts’ estimations?”

In the first example, we use ambiguous terms to
describe the losses. In practice, however, interval-based
data is commonly used to quantify uncertainty in the
estimation of losses. The second example represents
losses using intervals. Like in the first example, sup-
pose that we have two experts. Given an access, the
first expert believes that the possible loss is in the range
[1000, 4000] with confidence degree 0.5, in the range
[3000, 5000] with confidence degree 0.4, or in the
range [1000, 6000] with confidence degree 0.1. The
second expert believes that the possible loss is in the
rage [1000, 2000] with confidence degree 0.1, in the
range [2000, 5000] with confidence degree 0.3, in the
range [3000, 6000] with confidence degree 0.4, or in
the range [1000, 6000] with confidence degree 0.2. A
similar question is “what are the final risk estimation
based on these two experts?”

3. Problem Formalization
In the engineering field, the definition of the risk of
an event, Risk(e), is often simply calculated as
Risk(e) = Probability(e) x Losses(e)

Therefore, without loss of generality, we introduce
the following definition for risk estimations in access
control.
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Definition 1: Let A be the universal set of losses
in access control, a risk estimation m is a function
P(A) — [0,1] where P(A) is the powerset of A. Let
S = {z|m(z) > 0,z C A}, S is called the focal set
of the risk estimation m.

Examples of A might be a set of predefined states or
data intervals. For instance, A = {high, medium, low}
in example one or A = {z|z € [1000, 6000]} in exam-
ple two. S contains some subsets of A that represent
the interesting losses in a particular estimation. The
interpretation of m depends on the applications. m(x)
may refer to the likelihood, the subjective probability,
or the confidence degree of the corresponding loss x.
We use risk estimation or confidence degree to indicate
the same concept thereafter. 7 has a unit interval [0,
1] as its codomain where O represents a loss that is
believed to be impossible and 1 represents a loss that
is believed to a must.

In the first example, the risk estimation function
from expert one is the following:

0.1 if z = {medium}
m(z) = ¢ 0.8 if z = {high}
0.1 if z = {low, medium, high}

The case in which z is equal to the universal set
A represents the case in which expert one cannot
distinguish all losses due to the lack of information or
knowledge, referred to as ignorance. In other words,
each loss is possible in this case. Based on the descrip-
tion of example one, the confidence degree of igno-
rance is 0.1. In addition, the focal set of the risk estima-
tion is {{medium}, {high}, {low, medium, high}}.

The risk estimation function from expert two is
similar and thus omitted.

In the second example, the risk estimation function
from expert one is the following:

05 if z = {ala € [1000,4000]}
m(z) = 1 0.4 if z = {ala € [3000,5000]}
0.1 if z = {ala € [1000,6000]}

Notice that A is equal to [1000,6000]. In this case,
the confidence degree of ignorance is 0.1 based on
the description of example two. The focal set S is
{[1000, 4000], [3000, 5000], [1000, 6000] }.

The goal of the aggregation of risk estimation is to
generate a new estimation function based on estimation
functions from the two experts in both examples.
Before discussing aggregation rules, we should in-
troduce operations that will be applied to combining
estimations.



4. Operations and the K-Algebra

It is straightforward to see that the crucial operations
in the aggregation of risk estimations from different
sources are the combination of different confidence de-
grees regarding the same or similar loss (agreement) or
different loss (conflict). For this purposes, we introduce
some relevant operations defined on the unit interval.

4.1. Conjunction

Intuitively, we expect that the conjunction (x) of two
confidence degrees x and y about a loss satisfies the
following properties:

¢ x*y is non-decreasing with respect to both = and
y. If the confidence degree from one source, e.g.
z, is increasing, the conjunct confidence can either
increase or have no change, but cannot decrease.

o The evaluation order of * does not matter when
aggregating two or more confidence degrees.

o The value 1 (must happen) is the identity element
(1 xx = z), and O (must not happen) is the zero
element (z * 0 = 0). The intuition is as follows.
‘When combining 1 and another confidence degree
z, because 1 means that the case must happen, the
conjunct confidence degree should simply be z.
When combining 0 and z, because 0 means that
the case must not happen, the conjunct confidence
degree should be 0.

These requirements are met exactly by the following

definition of t-norms.

Definition 2 (Triangular Norm(t-norm) [4]): A bi-
nary operation * in the real unit interval [0,1] is a
t-norm iff

1) it is associative and commutative, i.e. Vz,y, z €

[0,1], (z*xy)*xz=z*(y*2) and Txy = y* 2;

2) it is monotonic in the first argument, i.e.

Vz,y,z € [0,1], z < y implies = * z < y * 2;
3) it satisfies the boundary condition, i.e. Vx €
[0,1],1 %z = z.

Lemma 1: A t-norm * is monotonic in the second
argument, i.e. Vz,y,z € [0,1],z < y implies z xz <
z * y. Furthermore, a t-norm * satisfies 0 * x = 0 and
z * y < min(z, y).

There are uncountably many t-norms [5]. Different t-
norms are desirable in different settings of aggregation.
The following three basic t-norms are of particular
interest to us, because they represent the best oper-
ations for combining some typical risk estimations in
a conjunctivemanner.

(Godel t-norm)
(Product t-norm)

o T gy = min(z,y)
° m‘*py::l‘,"y
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o z¥y=max(0,z+y— 1) Lukasiewicz t-norm)

Obviously, we have to determine how to choose
the most appropriate t-norm in a particular scenario.
Roughly speaking, there are two different methods: a
semantic method and an algebraic method.

The semantic method is based on the semantics
of the risk estimation and/or the relevant loss. In
example two, if expert one estimates the loss to be
in the range [1000, 4000] with confidence degree 0.5
using methodology A and with confidence degree 0.4
using methodology B, the conjunction (the pessimistic
combination) of these two confidence degrees is clearly
0.4. Therefore, *4 should be applied here.

In example two, expert one estimates the loss to
be in the range [1000, 4000] with confidence de-
gree 0.5 and expert two estimates the loss to be in
the range [2000, 5000] with confidence degree 0.3.
Based on these two evidences, there is an agreement
on the intersection loss [2000, 4000], referred to as
agreement. Because in a conjunctive combination of
evidences, the case in which [2000, 4000] is true relies
on the case in which both estimations are true, the
confidence degree of [2000, 4000], accordingly, should
be 0.5 *, 0.3 = 0.15.

In example two, expert one estimates the loss to
be in the range [3000-5000] with confidence degree
0.4, referred to as evidence one, while expert two
estimates the loss to be in the range [1000-2000] with
confidence degree 0.1, referred to as evidence two.
These two estimations contradict each other because
the two losses have no intersection, referred to as
conflict. The confidence degree of the conflict relies
on both evidences and may be calculated as follows
if we choose a conservative approach to evaluate the
combined confidence degree of the conflict.

Based on evidence one, expert one estimates all
losses except for [3000-5000] with confidence degree
1 - 0.4 = 0.6. Such a collection of losses obviously
contains the loss range [1000-2000]. The confidence
degree of the collection (0.6) is compatible with that
(0.1) of loss range [1000-2000] in evidence two. There-
fore, if we choose a conservative approach, based on
both evidences, the combined confidence degree of
conflict is 0. *; can be applied for this situation, that
is, 0.4 %, 0.1 = max(0,0.4+0.1 —1) =0.

We can clearly see that only if the sum of confidence
degrees of the conflicting evidences is larger than 1, the
combined confidence degree of conflict is larger than
0. Assume that expert two’s confidence on loss range
[1000-2000] is 0.7 rather than 0.1. Since the confidence
degree on loss range [1000-2000] is at most 0.6 based
on evidence one, a conflict arises. The confidence de-
gree might be computed using the difference between



two confidence degrees; it would thus be equal to 0.1
(0.7-0.6). The combined confidence degree of conflict
is then 0.1, which is exactly the result of *; conjunction
0.4 0.7 = max(0,0.4 4+ 0.7 —1) = 0.1.

The algebraic method is based on the algebraic
properties of these t-norms. First, we have

(T*gy) 2 (T*py) > (Tx1Y)

Hence, if we want to adopt a conservative conjunction,
we might choose *;. By contrast, we might choose *,
if we are optimistic about the conjunction.

Second, the Godel t-norm is also the only t-norm
where each z € [0,1] is an idempotent element, that
is, x*4 T = x. This reflects the intuition that when two
estimates are the same, one takes the consensus.

Third, the product t-norm belongs to an important
subclasses of t-norms called strict t-norms. A strict t-
norm is strictly increasing in both of its arguments,
that is, 1 *p Y1 > T2 *p Y2 if either z1 > T2 Ay > 32
or 1 > x3 Ay1 > yo. Therefore, *, is useful if we
want to ensure that larger confidence degrees always
generate a larger combined confidence degree.

Fourth, the Lukasiewicz t-norm is an example of
another important subclasses of t-norms, the nilpo-
tent t-norms. A nilpotent t-nornm ensures that Vr €

[0,1),3n € N such that Z*z x...xx = 0. That is,
it has the following property: No matter how large a
confidence degree is (except for 1), when aggregated
enough number of times (finite) using *;, the combined
confidence degree is 0.

4.2. Negation

In a situation where we need to calculate the confi-
dence degree of losses except for a particular loss, we
may need a negation operation. We define the negation
of a confidence degree x, referred to as —x, as follows:

rxr=1—=x

For instance, if an expert estimates a high loss regard-
ing an access with confidence degree 0.3, then we can
use the negation of the confidence degree (—0.3 = 0.7)
to compute the expert’s confidence degree on all of
other loss cases (except for the high loss).

4.3. Disjunction

Intuitively, we expect that the disjunction (¢) of two
risk values z and y satisfies the following properties
(only the last one differs from the conjunction case):

o The aggregation = * y is non-decreasing with

respect to both = and y.
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o The evaluation order does not matter.

o The value 1 (absolutely permit) is the subsuming
element (1 * z = 1), and O (absolutely deny) is
the identity element (z * 0 = x).

These properties are satisfied by any t-conorm. The
definition of t-conorm is different from that of t-norm
only in the boundary condition: Vz € [0,1],0¢z = z.
The standard way to define t-conorms [5], [6] is to use
t-norms:

zoy=-(-zxy)=1-(1-z)*(1-y)

Thus, the three dual t-conorms are:

o T 04y = max(z,y) (Godel t-conorm)
e IO Y=T+y—I-y (Product t-conorm)
e zopy=min(l,z +y) (Eukasiewicz t-conorm)

Because t-conorms are constructed by negation and
t-norms, they have exactly the same properties of their
dual t-norms. Therefore, we omit the discussion of the
choice of t-conorms.

4.4. Implication

Sometimes, we may need an implication opera-
tion to evaluate “conditional” confidence degrees. For
instance, suppose that we have an “unconditional”
confidence degree = about a high loss based on all
evidences, including both agreement and conflict, from
experts, and that the confidence degree of the conflict
is y. One may further ask for the confidence degree of
a high loss if we ignore the conflict, i.e. adjusting the
confidence degree purely based on the agreement. To
achieve this goal, we may calculate the “conditional”
confidence degree by implication(—), i.e. -y — =z.
The semantics of -y — z is the confidence degree
of a high loss if there is no conflict, i.e. adjusting the
confidence degree z in the case where no conflict exists
(—y). In the standard semantics of t-norm based-fuzzy
logics, where conjunction is interpreted by a t-norm,
an operation residuum plays the role of implication.

Definition 3: [4] Let x be a left-continuous t-
norm. A residuum — of t-norm x satisfies Vx,y, 2z €
[0,1],z — y = sup{z|z * z < y}.

Lemma 2: [4] For each left-continuous t-norm *
and its residuum —, we have

e z<yiff(z > y)=1

. (1 - :L') =I.

o Godel residuum: (z =4 y) =y if > y.

« Product residuum: (z —, y) = y/x if z > y.

« Lukasiewicz residuum: (z = y) =1 —z + y if

>y



The implication operation is widely used to remove
the effect of specific evidences like conflict and igno-
rance that are detailed in Section 5.

4.5. K-Algebra

As mentioned at the beginning of this section,
the crucial operations for aggregating risk estimations
from different sources are the meaningful operations
on the unit interval. Therefore, we introduce the fol-
lowing K-algebra specially designed for the operations
on risk estimations.

Definition 4 (K-Algebra): An algebraic structure
([0,1], *, o, -, —) is a K-Algebra iff %, o, -, and
— are t-norms, t-conorms, negation, and implications,
respectively.

The K-Algebra actually provides a class of oper-
ations that can be used for logical operations, e.g.
conjunction, negation, disjunction, or implication, on
risk estimations. In the following sections, we show
how these operations can be used to express various
risk combination rules proposed in the literature and
give relevant logic explanations for these rules. In
addition, we will show how to generalize these rules
based on their logical explanations.

5. Demonstration of Aggregation Rules

From a set theoretic standpoint, estimations from
different sources are either compatible or conflicting.
If the intersection of two focal losses from different
sources is not empty, the relevant estimations are
compatible because they at least have an agreement on
the intersection. By contrast, the relevant estimations
are conflicting if the intersection is empty. Aggrega-
tion rules guide the combination of compatible and
conflicting estimations from different sources.

5.1. Dempster’s Rule

There are multiple possible strategies to combine
compatible estimations and conflicting estimations.
One strategy may strongly emphasize the agreement
between compatible estimations and ignore all of the
conflicting evidences. Formally the combined risk es-
timation (mi3) of a loss z is calculated from the
aggregation of two risk estimations m; and mgy of
relevant losses = and y according to the following
steps:

1) We first calculate a raw combined risk estimation

rmy2(z) of z based on the conjunction (*p) of
two relevant risk estimations = and y, i.e. z =
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2)

3)

4)

z Ny, from two sources, expert one and two,
respectively.

rmiz(z = x Ny) = my(z) *, ma(y)

This step represents one part in the combined
risk estimation of loss z based on one evi-
dence from two independent sources because
both sources somewhat support loss z through
x and y.

There might be more evidences for z from two
independent sources, e.g. u N v = z where u
and v are different from z and y, respectively.
Therefore, we need to accumulate the risk esti-
mations of all evidences. Such an accumulated
risk estimation armga(2) is calculated through
the disjunction (¢;) of estimations based on all
evidences.

armiz(z) = Z m1(x) *p m2(y)

TNy=2

There might be a special class of losses from
different sources such that Ny = (. Intuitively,
the combined risk estimation of @) represents the
risk estimation based on conflicting evidences,
referred to as conflicting risk estimation. Like-
wise, we calculate the accumulated raw conflict-
ing risk estimation armiz(@) by accumulating
the conflicting risk estimation between multi-
ple sources through the disjunction (¢;) of the
conjunction (x,) of the estimations that have no
intersection on losses.

armlz(@) = Z my(z) *p m?(y)

zNy=0

Finally we calculate the final risk estimation
md,(z) on z by removing the effect of conflict-
ing risk estimations from the raw risk estimation,
i.e. the final risk estimation of z is the confidence
degree of the statement that the raw combined
risk estimation of all non-conflicting evidences
(the negation of the estimation of conflicting
evidences) implies (—p) the raw combined risk
estimation of z based on evidences for z.

miy(2) = (marmiz () —p armas(2))

Such an implication recomputes the confidence
degree of z in the case where no conflicting ev-
idence exists. Therefore, its semantics is exactly
what we need.



If we use a mathematical equation to present the
aforementioned calculation, the combination rule is

z my(z)ma(y)

zNy==z

1-— 2 my (u)ma(v)

uNv=0

mi’Q(z) =

As we can see, this combination rule equation is
exactly the Dempster’s Rule of Combination [7] widely
used in many applications, e.g. the aggregation of data
from different sensors. To interpret the Dempster’s
Rule, we present a novel t-norm based explanation for
it. This explanation is the base of a generalized Demp-
ster’s rule discussed in Section 6. To better understand
Dempster’s rule, let us look at the aggregation results
in example one. Figure 1 shows the raw combined
estimations of allof risk estimations by expert one and
expert two.

Expert One (m;)
b |{mMp | {H} |{LMH}
0 0.1 0.8 0.1
Expert Two | {L} 07 |{L |0 (1] {L}
(m,) 0 0.07 [0.56 |0.07
{M} 01 |9 |{M |@ {m}
0 0.01 [0.08 |0.01
{H} 0 o (o {H} | {H}
0 0 0 0
{LMH} 0.2 |{L} [{m} {H} {L,M,H}
0 0.02 [0.16 |0.02

Figure 1. Combined Raw Estimations for Example
One

Based on Figure 1, we first calculate the raw con-
flicting risk estimations from expert one and expert
two, i.e. the disjunction of the conjunction of estima-
tions that have an empty intersection.

my({M})ma({L})
+mi({H})ma({L})
+mi({H})ma({M})
= 0.07+4+0.56 + 0.08

= 0.71

armo(0)

Based on Equation (5.3), we obtain the combined
risk estimation as follows:
m$y({L}) = 0.07/(1 — 0.71) = 0.24
my({M}) = 0.04/(1 —0.71) = 0.138
méy({H}) = 0.16/(1 — 0.71) = 0.55

o m&({L, M, H}) =0.02/(1 —0.71) = 0.069

As we can see from this example, the Dempster’s
Rule clearly emphasizes the agreement between mul-
tiple sources and remove all of the conflicting evi-
dences by normalization (implication operation). Now
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let us look at how the Dempster’s Rule is used to
combine estimations of data intervals. The combined
raw estimations of different data intervals are shown
in Figure 2.

Expert One(m;,)
1000-4000 3000-5000 1000-6000
0.5 0.4 0.1
Expert Two | 1000-2000 | 0.1 | 1000-2000 ] 1000-2000
(m,) 0.05 0.04 0.01
2000-5000 | 0.3 | 2000-4000 3000-5000 2000-5000
0.15 0.12 0.03
3000-6000 | 0.4 | 3000-4000 3000-5000 3000-6000
0.2 0.16 0.04
1000-6000 | 0.2 | 1000-4000 3000-5000 1000-6000
0.1 0.08 0.02

Figure 2. Combined Raw Estimations for Example
Two

We calculate the conflicting estimation first. There
is only one case.

arm12(@) =0.04

Accordingly, we obtain the combined risk estimation
on different intervals as follows:

o m$y(1000 — 2000) = (0.05+0.01)/(1 —0.04) =
0.0625
m¢, (1000 — 4000) = 0.1/(1 — 0.04) = 0.10417
m$5(2000 — 4000) = 0.15/(1 — 0.04) = 0.15625
m$5(2000 — 5000) = 0.03/(1 — 0.04) = 0.03125
m¢, (3000 — 4000) = 0.2/(1 — 0.04) = 0.20833
mo (3000 — 5000) = (0.12 + 0.16 4+ 0.08) /(1 —
0.04) = 0.375
m$,(3000 — 6000) = 0.04/(1 — 0.04) = 0.04167
m¢,(1000 — 6000) = 0.02/(1 — 0.04) = 0.02083
Since the conflict is trivial in example two, the com-
bined risk estimations are only slightly different from
the estimations obtained before removing the conflict,
as expected.

5.2. Yager’s Rule

Completely removing the effect of conflicting risk
estimation in the final estimation may not be desired
because in highly conflicting scenarios such a rule may
generate counter-intuitive results [8]. For instance, the
combined risk estimation of a high loss in example
one is 0.55, which is counter-intuitive because expert
two’s confidence degree of a high loss is at most 0.2.

An obvious approach to the problem is not re-
moving the risk estimation of conflicting evidence in
the combined risk estimation. However, the question
is where we place the combined risk estimation of
conflict. Before answering this question, let us consider
a special case, that is, the combined risk estimation of



the universal set A (the set of all interesting losses).
Unsurprisingly, we obtain the following equation to
calculate the accumulated raw combined confidence
degree of the universal set A.

armyz(A) = mi(A)my(A)

There is no accumulation because only the intersec-
tion of two As is equal to A.

In our setting, A represents the set of all interesting
losses, thus the risk estimation of the universal set
A, i.e. m(A), semantically represents the degree of
ignorance, that is, the confidence degree of the case
in which we cannot identify any difference between
all possible losses due to insufficient knowledge or
information.

Meanwhile, the combined confidence degree of ()
represents the confidence degree of the case in which
evidences from different sources conflict with each
other. Such conflicting evidences represent a new case
in which there is no sufficient information to make
a judgment on which one is correct. Therefore, one
reasonable solution is integrating, i.e. by using the
disjunction, the combined risk estimation of @) and the
combined risk estimation of A as the final combined
risk estimation of ignorance, represented by m¥,(A).
Formally,

m¥y(A) = armiz(A) + armi2(0)

Such a combination rule for different evidences is
referred to as Yager’sRule [9].
In example one, the combined risk estimations based
on the Yager’s rule are the following:
mi,({L}) = 007
mi,({M}) = 0.04
mi,({H}) = 0.16
mYy({L,M,H}) =0.02+0.71 = 0.73
Compared to the combined risk estimations based on
the Dempster’s rule, the results based on the Yager’s
rule clearly show that the ignorance case dominates
the combined risk estimation which is in accordance
with the fact that two experts present highly conflicting
estimations.
The combined risk estimations of scenario two based
on the Yager’s rule is the following:

mY,(1000 — 2000) = (0.05 + 0.01) = 0.06
mY,(1000 — 4000) = 0.1

mY,(2000 — 4000) = 0.15

m?, (2000 — 5000) = 0.03

mY¥,(3000 — 4000) = 0.2

mY, (3000 —5000) = (0.12+0.16+0.08) = 0.36
mY,(3000 — 6000) = 0.04

m?, (1000 — 6000) = 0.02 + 0.04 = 0.06
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Because there are very low conflicting evidences in
scenario two, the combined risk estimations based
on the Yager’s rule are close to that based on the
Dampster’s rule.

5.3. Inmagaki’s Rule

The difficulty of combination rules for evidences
from different sources is how these rules handle con-
flicting evidence and ignorance. Dempster’s rule re-
moves the effect of conflicting evidences while Yager’s
rule integrates the effect of conflicting evidences and
that of ignorance. It is thus natural to suggest a
different rule that completely removes the effect of
conflicting evidences and ignorance, represented by the
disjunction (¢;) of arm2(0) and my2(A). This rule is
referred to Inagaki’s rule [10]. The crucial difference
between the Inagaki’s rule and the Dempster’s rule is
the last step: distributing the conflicting evidences and
ignorance to each combined estimation. Formally, the
combined estimation m¢,(z) of loss z is calculated as
follows.

mia(2) = (~(armaa() oy miy(A)) —p miy(2))

The objective of the product implication operation
in this step is to proportionally distribute the effect
of conflicting evidences and ignorance into each com-
bined risk estimation.

The corresponding mathematical equation is the
following:

Z my(z)ma(y)

TzNy=z

1—my(A)ma(A) — > ma(u)ma(v)

uNv=0

mﬁ2(z) =

where A represents the universal set as usual.

In example one, the combined risk estimations based
on Inagaki’s rule are the following:
m’ﬁ({L}) =0.07/(1 — 0.02 — 0.71) = 0.259
mis({M}) = 0.04/(1 —0.02 - 0.71) = 0.148
mip({H}) = 0.16/(1 — 0.02 — 0.71) = 0.593
mio({L, M, H}) = 0

In the highly conflicting example one, the Inagaki’s
rule generates counter-intuitive combined estimation
like the Dempster’s rule.

The combined risk estimations in example two based
on the Inagaki’s rule is the following.

mi, (1000 — 2000) = 0.063829787

o M}, (1000 — 4000) = 0.106382979
o m1,(2000 — 4000) = 0.159574468
o m1,(2000 — 5000) = 0.031914894
o m1,(3000 — 4000) = 0.212765957



o m},(3000 — 5000) = 0.382978723

o miy(3000 — 6000) = 0.042553191

o miy (1000 — 6000) =
Because there are very low conflicting evidences in
example two, the combined risk estimations based
on the Inagaki’s rule are close to that based on the
aforementioned rules. In a low conflicting scenario, the
Inagaki’s rule is a reasonable choice if we must get rid
of ignorance.

5.4. Ferson and Kreinovich’s Rule

All aforementioned rules, when dealing with data
intervals, calculate the resulting data interval by the
intersection of two data intervals. Another choice for
calculating the combined data interval is perhaps the
arithmetic average of two data intervals. The calcula-
tion of risk estimations is the same as that in afore-
mentioned rules: the disjunction of the conjunction of
relevant risk estimations. This rule is referred to as
Ferson and Kreinovich’s rule [11].

miy(2) = > ma(z) xp ma(y)

—zt
=234

Notice that based on the Ferson and Kreinovich’s
rule conflicting evidences are averaged; therefore, there
is no need to particularly deal with conflicting ev-
idences. The Ferson and Kreinovich’s rule empha-
sizes neither the agreement nor the conflict between
evidences. Instead, the rule averages all evidences
from sources. Ferson and Kreinovich’s rule is not
for aggregating risk estimations in example one, but
for aggregating risk estimations in example two. The
raw combined risk estimations in example two are
shown inFigure 3. The combined risk estimations are
as follows.

. 2(1000 3000) = 0.05

o }2(1000 4000) = 001

o (1000 — 5000) =

. }2(1500 4500) = O 15

. 5(1500 — 5500) = 0.03

. }2(2000 3500) = 0.04

. }2(2000 5000) = 0.2

o 5(2000 — 5500) = 0.08

o }2(2000 6000) = 0.04

. 5(2500 — 5000) = 0.12

. }2(3000 5500) = 0.16

. 5(1000 — 6000) = 0.02

5.5. Dubois and Prade’s Disjunctive Rule

All aforementioned rules determine the raw com-
bined risk based on a conjunctive rule on agreement,
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Expert One(m,)
1000-4000 | 3000-5000 | 1000-6000
0.5 0.4 0.1
Expert Two | 1000-2000 (0.1 | 1000-3000 | 2000-3500 1000-4000
(my) 0.05 0.04 0.01
2000-5000 (0.3 | 1500-4500 | 2500-5000 | 1500-5500
0.15 0.12 0.03
3000-6000 | 0.4 |2000-5000 | 3000-5500 | 2000-6000
0.2 0.16 0.04
1000-6000 | 0.2 | 1000-5000 | 2000-5500 | 1000-6000
0.1 0.08 0.02

Figure 3. Combined Estimations for Example Two
based on the Ferson and Kreinovich’s Rule

ie. armiz(2) = ¥,y = m1(z) %, ma(y). The
resulting risk estimation must obtain supports from
both sources. Accordingly, we may define a disjunctive
consensus rule, i.e. the resulting risk estimation only
need to obtain support from one source. Intuitively,
the combined resource estimation is obtained by the
disjunction of the conjunction of disjunctive risk esti-
mations.

miy(2) =

2 my(z) *p ma(y)

z=zUy

This rule is referred to as Dubois and Prade’s
rule [12]. Note that the combined losses are the union
of relevant losses. Because the union does not generate
any conflict and does not reject any of the information
provided by the sources, no process is needed to deal
with conflicting evidence. However, because this rule
emphasizes the disjunctive relation between sources
(experts), it may yield a more imprecise result than
aforementioned methods. The combined raw estima-
tions for example one are shown in Figure 4. The
combined risk estimations are as follows:
mis({L, M}) = 0.07
mi,({L,H}) = 0.56
mi,({M}) =0.01
mi,({M,H}) = 0.08
mi,({L,M,H}) =0.28
Most combined results do not use singletons to repre-
sent losses any more; therefore the combined results,
compared to the conjunctive style rules, are fuzzier.
One distinct feature of this rule is that the combined
risk estimation of ignorance will significantly increase,
which can be shown in both examples.

The new combined raw estimations for example two
are shown in Figure 5. The combined risk estimations
are as follows:
mi5(1000 — 4000) = 0.05
mY, (1000 — 5000) = 0.04
(2000 — 5000) = 0.27
5(3000 — 6000) = 0.16

U
mia
U
mya



Expert One (m;)
{L} {m} {H} {LM,H}
0 0.1 0.8 0.1
Expert Two | {L} 07 [ LM [{LHY  [{LMR}
(my) 0 0.07 0.56 0.07
{Mm} 0.1 | {LM} {M} {M,H} | {LLM,H}
0 0.01 0.08 0.01
{H} 0 {LH} {M,H} | {H} {L,M,H}
0 0 0 0
{LM,H} 0.2 | {LM,H} [ {L,M,H} | {LM,H} | {LLM,H}
0 0.02 0.16 0.02

Figure 4. Combined Estimations for Example One
based on the Disjunctive Rule

o m,(1000 — 6000) = 0.48

Expert One(m,)
1000-4000 | 3000-5000 1000-6000
0.5 0.4 0.1
Expert Two | 1000-2000 | 0.1 | 1000-4000 | 1000-5000 1000-6000
(my) 0.05 0.04 0.01
2000-5000 | 0.3 | 2000-5000 | 2000-5000 1000-6000
0.15 0.12 0.03
3000-6000 | 0.4 | 1000-6000 | 3000-6000 1000-6000
0.2 0.16 0.04
1000-6000 | 0.2 | 1000-6000 | 1000-6000 1000-6000
0.1 0.08 0.02

Figure 5. Combined Estimations for Example Two
based on the Disjunctive Rule

6. Generalization of Combination Rules

The objectives of the algebra are not only to present
a new logic-based interpretation of combination rules
for uncertain data, but also to introduce a new, system-
atic approach to generalize these combination rules. In
this section, we show how to generalize the Dempster’s
rule. The generalization of other rules is similar and
thus omitted.

In essence, the Dempster’s rule emphasizes the
agreement while suppressing the conflict. Agreement
can be identified by conjunctive operations and col-
lected by disjunctive operations while conflicts can
be removed by implication operations. A generalized
Dempster’s rule is described as follows.

o Calculate a raw combined risk estimation
rmi2(z) on agreement z = z Ny by conjunction
(x) of two relevant risk estimations of = and y.

rmiz(z =z Ny) = my(z) * ma(y)

This step represents a confidence degree of a loss
based on one piece of evidence for the loss.

« Calculate an accumulated raw combined risk es-
timation armiz(z) on agreement z = x Ny by
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disjunction (o) of all raw combined risk estima-
tions.

armiz(z) = rmiz(z) o rm%Q(z) ...ormiy(2)

This step represents the collection of confidence
degrees of a loss based on many pieces of evi-
dence for the loss.

« Calculate a final combined risk estimation mi,(z)
by removing the effect of conflicting evidence
armi2(0) through implication (—).

miy(2) = ~armq2(0) — armia(2)

Again, this step adjusts a confidence degree of a
loss in a situation (or a precondition) in which no
conflicting evidence exists.

Semantically, the generalized Dempster’s rule ex-
actly realizes its goal: emphasizing the agreement
while suppressing the conflict from different evidences.
The original Dempster’s rule requires the sum of all
confidence degrees, before and after aggregation, to
be one. Such a condition can be easily realized by the
following normalization process after the last step.

miy(2)

Z miy ()

zeS

where nm$,(z) represents a normalized confidence
degree of loss z, and S represents the focal losses
whose confidence degrees are non-zero.

Other rules can be generalized using similar steps
and thus are omitted. The obvious benefit of the
generalized Dempster’s rule is the freedom to choose
the best operation based on the semantics of risk es-
timations and relevant losses, which could potentially
improve the quality of combined risk estimations.

nmiy(2) =

7. Conclusion

In this paper, a formal approach based on well devel-
oped t-norms is proposed to aggregate uncertain risk
estimations from different sources. The logic explana-
tions of existing combination rules are presented, based
on which generalized combination rules are developed.
In the future, we plan to devise new aggregation rules
using the K-Algebra by considering additional factors.
For instance, the size of the intersection of losses
and the size of the union of losses should affect the
combined risk estimations of these losses.
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